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A method for the generation of orthogonal boundary-fitted 

curvilinear coordinates for arbitrary simply- and doubly-connected 
domains is developed on the basis of the theory of quasi-conformal 

mappings of quadrilaterals and of previous work by Ryskin and Leal. 
The method has useful applications in orthogonal grid generation in 

two-dimensional and axi-symmetric domains and in the extension of 

rapid elliptic solvers and spectral methods to complex geometries. 

A new technique for the calculation of the conformal module of 

quadrilaterals is also presented. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

The development of mapping algorithms from an often 
complex “physical” domain to a simpler “computational” 
domain is an important subfield of contemporary research 
in numerical methods for partial differential equations. The 
literature in this area is extensive and we shall not attempt 
a review here. Recent reviews include those of Thompson 
et al. [ 1, 21, and Eiseman [3]. 

One of the most robust and extensively applied methods 
is that of Thompson et al. [ 1, 21, in which the transformed 
computational variables are taken to satisfy a system of 
Poisson equations in the original physical variables. Con- 
trol on the density of the coordinate lines is obtained by 
adjusting the source terms of the generating equations. An 
alternative approach, typified by the work of Eiseman [3], 
is the use of algebraic interpolation methods. The mappings 
produced by both these methods have the disadvantage of 
not being, in general, orthogonal. Orthogonality endows a 
mapping with certain very significant advantages such as a 
simpler form of the transformed equations, greater ease and 
accuracy in the representation of boundary conditions, 
significantly lower discretization error, and more compact 
difference equations [4]. The need to extend efficient 
numerical techniques, such as spectral methods [S] and fast 
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elliptic solvers [S], to more complicated geometries, 
requires that orthogonal mapping methods be developed. 

Conformal mappings are the most well-known examples 
of orthogonal mappings in two dimensions. This area is one 
which is mathematically well understood, and various pro- 
cedures for their numerical implementation may be found in 
the literature (see, e.g., Refs. [7-lo]). For numerical pur- 
poses, the disadvantage of conformal mappings is their lack 
of flexibility: given a domain and its computational image, 
the mapping connecting them is unique if the images of any 
three real parameters governing the mapping are prescribed. 
Thus, if the images of three points on the boundary, or that 
of a point inside the domain and one on the boundary, are 
specified, the mapping is completely determined. Addi- 
tionally, the inflexibility of conformal mappings causes 
them to be “ill conditioned” in a way that often makes them 
unsuitable for numerical work. As discussed, e.g., in Henrici 
[7], two points that are close to each other in the computa- 
tional domain, can be quite far apart in the physical 
domain. Furthermore, a small change in the shape of the 
physical domain can lead to a completely different mapping. 

A variant of the elliptic grid generation methods was 
introduced by Ryskin and Lea1 [ 123, hereafter referred to as 
RL, who approached the problem of orthogonality of the 
transformation from a covariant viewpoint. Starting from 
the simple observation that the physical coordinates x1 = x, 
x2 = y, trivially satisfy Laplace’s equation, i.e., V’x, = 0, 
they carried out a transformation of variables that expresses 
the same equations in the computational variables 5, ‘I. 
They were thus led to the equations 

$--[$(:s)+$(l$$)]=O, i=l,2, 

where h, = [(~x/X)~ + (8y/ag’)2]1’2 and h, = [(ax/aq)’ + 

HY/w211’2 are the scale factors of the transformation. The 
ratio 

A52 ?)=k#,, (1) 
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is termed the distortion function. The mapping equations of 
RL are then 

$(f$)+$(j$)=O, i=l,2. (2) 

Different mappings are generated by different specifications 
of the function f, and it is hoped that in this way some 
degree of control, possibly adaptive, on the distribution of 
coordinate lines can be achieved. 

The argument that led RL to believe that the new coor- 
dinates <, v] would be orthogonal was apparently that 
Eqs. (2) would take on a different form if the off-diagonal 
component of the metric tensor in the 5, q space 

axax ayay 
g12=ag-&+g’l (3) 

were not zero, as is appropriate for orthogonal coordinates. 
We have found, however, that this argument is insufficient 
in general and that the new coordinates may not be 
orthogonal [ 13 1. 

In addition to the question of the orthogonality of the 
transformed coordinates, another important point left open 
by the work of RL is that of the existence of the mapping 
and the related aspect of the latitude in the choice of the dis- 
tortion function. They did not mention any constraint onf, 
and yet it is our experience as well as that of others [18] 
that, in general, f cannot be prescribed arbitrarily for an 
acceptable solution to exist. A simple example is the map- 
ping of a square onto itself with the distortion function f 
specified to be a constant k, k # 1. Here it is easy to show 
that no solution with corners falling onto corners exists. 

In spite of these unsolved questions that render the RL 
method somewhat ad hoc, several examples of its successful 
application can be found in the literature [ 1416). Some of 
the unanswered questions of the “strong constraint” method 
of RL were addressed in a later paper by Ascoli et al. [ 171. 
However, the existence proof given there is limited to the 
particular case in which the conformal module of the physi- 
cal domain (see Section II) vanishes. The applications given 
by Lea1 and co-workers in [14-163 do indeed fall in this 
category. Existence proofs for the “strong-constraint” 
method for more general domains, as well as for the “weak- 
constraint” method, are unavailable. As a matter of fact, 
evidence may be found in the literature of the failure of the 
latter algorithm for quite simple domains [ 181. 

Building on a suggestion by Ryskin and Leal, the first 
purpose of the present paper is to show the connection 
between their formulation and the well-developed theory of 
quasi-conformal mappings [ 19, 201 explicitly. This enables 
us to answer some of the open questions related to their 
method and offers hope that all the remaining obscure 
aspects will be clarified completely in the near future. Such 

a development should give confidence in its use as a power- 
ful computational tool in a wide variety of problems. 
In addition, we explicitly give a restricted class of distor- 
tion functions such that the existence of the mapping is 
guaranteed. 

Second, we present a computationally efficient way to 
generate the mappings governed by Eq. (2). The class of dis- 
tortion functions that we develop makes explicit use of the 
value of the conformal module of the physical domain. We 
have developed a new method to evaluate this quantity that 
appears to be of interest in itself and that is also described. 

II. THEORY 

As noted by RL, the mappings generated by Eqs. (2) can 
be studied in the framework of the theory of quasi-confor- 
ma1 mappings, of which we give a brief review. The reader 
interested in a more exhaustive treatment may refer to the 
standard texts by Ahlfors [19] and Lehto and Virtaanen 
POI. 

11.1. Problem Statement 

Since our goal is to construct mappings that mimic the 
classic orthogonal curvilinear coordinates for complicated 
geometries, the physical domain can be characterized as 
being enclosed by four continuous, non-intersecting (i.e., 
Jordan) arcs, whose union is a closed, non-intersecting (i.e., 
Jordan) curve. Such a domain, characterized by four ver- 
tices, is termed a quadrilateral. The vertices are denoted by 
P,, P,, P,, and P,, the numbering being in the positive 
(anti-clockwise) orientation. Doubly connected domains 
can also be treated in this way as, on introducing a cut, the 
two sides of which count as two of the four Jordan arcs, they 
become domains of this type. Our aim is to map this physi- 
cal domain Q onto the unit square S = { 0 < 5,~ < 1 }. 

Throughout this paper (5, n) will be used to denote the 
coordinates in the transformed, or computational, domain, 
while (x, y) will be used to refer to the coordinates in the 
original, or physical, domain. These symbols will also be 
used to refer to the mapping functions connecting the two 
coordinate systems. The notation [ = < + iv, and z = x + iy, 
where i is the imaginary unit, is also used. 

11.2. Conformal Mapping 

Conformal mappings are the best known examples of 
orthogonal mappings. Although, as mentioned above, this 
class of mappings is too restricted for our purposes, their 
consideration provides a useful starting point for our discus- 
sion. 

Let Q be a given physical domain of the above type. 
Riemann’s mapping theorem states that Q can be mapped 
conformally to any other simply connected domain [21]. If 
we wish this domain to be the domain S, we cannot require 
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the points P, through P, to fall on the corners of the square, 
since the theorem implies that the mapping is completely 
determined when the position of three boundary points (or 
any other set of three real quantities) is specified [21]. 
However, again on the basis of the Riemann mapping 
theorem, it can be shown that each quadrilateral Q can be 
mapped conformally to a fixed class of rectangles R in such 
a way that the vertices of the quadrilateral, in the proper 
sequence, are mapped onto the corners of the rectangle [7]. 
This class of rectangles consists of all the rectangles that 
have the same module M, defined as the ratio of the lengths 
of two adjacent sides. For the purpose of conformal map- 
pings, it is therefore seen that the module is a characteristic 
and fundamental property of every quadrilateral. In view of 
the arbitrariness in the choice of the adjacent sides, modules 
A4 and l/M must be considered identical. Since the inverse 
of a conformal mapping is conformal, it follows that two 
quadrilaterals, Q, and Q2, having the same module M, can 
be mapped onto each other conformally by using, as an 
intermediate step, the mapping on a rectangle with module 
M. In this sense, all possible quadrilaterals are divided into 
equivalence classes. Degenerate quadrilaterals with two 
coincident consecutive points (trilaterals, see, e.g., Fig. 1 l), 
or with two sets of two coincident consecutive points (lunes, 
see, e.g., Fig. lo), can also be put in this framework by 
considering them as limit cases of regular quadrilaterals, 
and ascribing to them modules 0 or co. 

If the mapping from Q to R can be determined, the 
problem of mapping the physical region Q onto the com- 
putational region S is reduced to that of mapping R onto S. 
This is a particular case of the so-called Grotzsch problem, 
which consists of finding the mappings that transform a rec- 
tangular region R onto another rectangular region R’ [ 193. 
Historically, the theory of quasi-conformal mappings has 
developed from the effort to provide a solution to this 
problem. Before quoting this solution, it is necessary to 
review some elements of this theory briefly. 

11.3. Quasi-conformal Mappings 

Consider a general mapping defined in a certain region 52 
of the complex plane. If the mapping transforms quadri- 
laterals of module M into quadrilaterals of module M’, the 
ratio 

(4) 

where the supremum is taken over all quadrilaterals of Sz, is 
termed the dilatation of the mapping. A mapping for which 
the dilatation satisfies the condition D < K-C cc is termed a 
K-quasi-conformal mapping. The statement that a mapping 
is quasi-conformal in Sz implies therefore that the maximum 
value of the ratio of the stretchings that it induces is 
bounded in IR. In other words, all mappings with finite 

dilatation are quasi-conformal. It is clear from this delini- 
tion that conformal mappings are 1-quasi-conformal. Since 
modules M and l/M are indistinguishable, dilatations D 
and l/D are in principle also the same. The prevailing 
convention is to define the dilatation in such a way that 
D 2 1, so that one need only consider the case K> 1. It can 
also be shown that a mapping and its inverse have the same 
dilatation. 

The functional definition of quasi-conformal mappings 
hinges on the Beltrami equations which play a role analo- 
gous to that of the Cauchy-Riemann equations in the 
theory of conformal mappings. Indeed, these equations may 
be viewed as generalizations of the Cauchy-Riemann equa- 
tions. They can be expressed in the compact form 

(5) 

where ,u(c, j) is the complex dilatation. Its relation to the 
dilatation D defined ealier by Eq. (4) is given by 

D-l 
sup M = D+1. 
R 

From the above equation it follows that 1~1 < 1. For a con- 
formal mapping, D = 1, p = 0, and the Beltrami equations 
reduce to the Cauchy-Riemann ones. 

The existence theorem of quasi-conformal mappings 
states that, given two simply connected, conformally equiv- 
alent domains D and D’ in the plane and a measurable func- 
tion p (1~1 < l), a quasi-conformal mapping between the 
two domains with the specified complex dilatation exists 
[20]. Here the provision that the domains be conformally 
equivalent means that it is possible to map the two domains 
onto each other with a mapping that is conformal 
everywhere and therefore rules out the possibility of map- 
ping, e.g., the entire plane onto a bounded domain. 

Upon a change of variables from i, 1: to <, q the Beltrami 
equation (5) can be expressed in terms of real variables as 

($-$)+i(!$+$) 

where p = pr + ipi. On equating real and imaginary parts, 
we obtain 

(6) 

(l-,,)~=-(l+,,,~+,i(~+~). (7) 



ORTHOGONAL MAPPINGS 257 

If these relations are viewed as equations in p, and pi, it is 
found that, if the orthogonality condition g,, = 0, with gr2 
given by (3), is to hold, pi = 0. This circumstance limits our 
consideration to real dilatations. We can then define a real 
function f( 4,~) such that 

In terms of this function, the Beltrami equations take the 
form 

(9) 

from which the connection with the Cauchy-Riemann 
equations, for whichf = 1, is again evident. On differentia- 
tion and elimination of x and of y, respectively, these 
equations reduce to the mapping equations (2) of RL. 

The above argument shows that, if x and y satisfy the 
Beltrami equations, then they also satisfy Eq. (2) and 
g,, = 0. However, if the coordinate generation technique is 
to be based on (2), a question of greater interest is the 
inverse one: under what conditions does satisfaction of (2) 
ensure orthogonality throughout Q? We have only been 
able to give a partial answer to this question, which is given 
in Section III.2 below. Further comments will be found at 
the end of Section V. 

As already noted, the introduction of the conformally 
equivalent rectangle R has reduced the original problem to 
a particular case of the so-called Grotzsch problem, i.e., of 
the problem of mapping a rectangle R onto a rectangle R’. 
This remark has an important bearing on the question of 
the existence of the mapping. Indeed it can be shown [ 191 
that such a mapping is K-quasi-conformal and exists if and 
only if the following condition is satisfied: 

(10) 

When R’ is the square S, M’= 1 and the above condition 
becomes 

K 2 sup(M, l/M). (11) 

Equality is achieved in the case of the afline, or linear, 
mapping [ = uz + 6, with Q and b complex constants. Any 
other orthogonal K-quasi-conformal transformation has 
K > sup( M, l/M). 

It should be noted that, although (11) ensures the 
existence of a quasi-conformal mapping from R to S, it does 
not guarantee that corners will be mapped onto corners. 

A simple example of this fact is the mapping between S and 
itself obtained by specifying the distortion function f = K 
such that K > 1 [ 131. Hence, for our purposes, Eq. (11) is to 
be considered as necessary but will, in general, not be 
sufftcient. Furthermore, as the composition of a l-quasi- 
conformal mapping (i.e., a conformal mapping) and a 
K-quasi-conformal mapping is K-quasi-conformal, we 
conclude that not only the constant K of the mapping from 
R to S must satisfy (ll), but also that the K of the total 
mapping must satisfy this relation as well. 

In view of the relation between the distortion functionf, 
the dilatation D, and the constant K, it is clear that Eq. (11) 
imposes a constraint on the class of distortion functions f 
that can be used to effect the mapping. Thus, while the con- 
dition f > 0 will ensure that 1~1 < 1, as required, it does not, 
by itself, ensure that the necessary condition (11) is satisfied 
[ 131, contrary to some statements in the literature [22]. 

A complete characterization of the class of admissible dis- 
tortion functions that will map the vertices of the quadri- 
lateral in the physical domain onto those of the unit square 
in the computational domain is a matter of current research. 
The problem is clearly very important, as it holds the key to 
the implementation of efficient adaptive mappings. In the 
following section we shall give a partial answer to this ques- 
tion by considering a restricted class of distortion functions. 

III. A CLASS OF DISTORTION FUNCTIONS 

Although we are unable to characterize admissible distor- 
tion functions in general, if the conformal module of the 
quadrilateral M in the physical plane is known, one can 
construct a simple class of mappings suitable for our pur- 
poses. This objective can be attained in the following way. 

The Riemann mapping theorem guarantees the existence 
of a unique conformal mapping between the quadrilateral Q 
and a rectangle R-{0<(81,06vjdMf with sides of 
length 1 and M. The distortion function f = he/he for such 
a mapping equals unity as already noted. Now let the 
rectangle be mapped to an auxiliary square domain 
S= {Od t, r?< l}, using a linear mapping that contracts 
or extends in the vertical direction, i.e., [= [, q = d/M. 
From the definition, clearly the distortion funtion for this 
mapping has the constant value M. 

To exert further control on the mapping, we now map S 
onto the final computational domain S using stretching 
transformations acting separately on the two coordinates; 
i.e., we set 

t = G,(t), v = G&7). (12) 

To ensure that this mapping be onto and one-to-one, it is 
sufficient to impose that the functions G, be strictly 
monotonic and that G,(O)=O, Gi(l) = 1. A similar 
stretching has been proposed in connection with conformal 
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FIG. 1. Conceptual steps in the construction of the class of distortion 
functions (13). 

mapping in Ref. [2]. The various steps used in the above 
construction are shown schematically in Fig. 1. 

The coordinate lines resulting from the composition of 
the three intermediate mappings described above will be 
orthogonal since the first two transformations evidently 
preserve orthogonality and clearly the change of variables 
(12) does not affect the validity of the orthogonality condi- 
tion, g,, = 0. Evidently, the intermediate mapping from R to 
S is an aftine mapping for which the dilatation equals A4. 
The final mapping is not, however, afline, and therefore the 
value of Kfor the complete mapping from Q to Swill satisfy 
K > M. To compute the scale factors of the composite trans- 
formation from (x, y) to (5, q) it is sufficient to apply the 
chain rule to find 

Since the first mapping from (x, y) to ([, 4) is conformal, 
the ratio of the scale factors h#/hiis unity and we find for the 
distortion function of the composite mapping 

4% dtldt 45) -- _ 
’ =“d[,dc-Mdqjdrj=M@$ 

(13) 

where 

dG, 
45) =-p b&g? (14) 

It must be emphasized that the stepwise approach taken 
in obtaining the mapping between Q and S is only a concep- 
tual device-in practice the mapping is done in a single step 
by choosing a distortion function of the type (13) at the 
beginning of the procedure and solving the mapping 
equations. In this choice it must be kept in mind that 
the functions a and b must be strictly positive, so that the 
G,‘s may be monotonic, and that, for corners to be mapped 
onto corners, M must be the exact module of the 
quadrilateral. Furthermore, since G, (0) = 0, G, (1) = 1, from 
(14) we obtain the constraint 

and, similarly, 

I 
’ 4 l= -. 

0 b(q) 
(16) 

Finally, for the dilatation to be finite, the functions a and b 

cannot vanish or become infinite in the interval [0, 11. It 
is readily verified that, because of these relations, f > M at 
least on part of Q, so that the condition (11) be satisfied. 

The preceding argument has enabled us to construct a 
broad class of distortion functions that are guaranteed to 
result in orthogonal mappings. These functions enable one 
to have some control over the density of the coordinate lines 
by varying the stretching determined by a and b which, from 
the above analysis, are seen to have a clear meaning. 
Locally, large values of a will give a large density of lines 
5 = const, while large values of b will produce a line dis- 
tribution of lines q = const. A particularly valuable feature 
of the preceding class of distortion functions is that sub- 
stituting them into the mapping equations (2) gives rise to 
separable equations. As will be seen below, this feature 
permits an efficient numerical solution of the equations and 
of certain physical problems posed on such domains. 

This approach to the construction of orthogonal 
mappings is not new and can be found elsewhere, e.g., in 
Ref. [22], where, however, the restrictions previously given 
on the functions a and b are not made explicit. 

111.1. More General Distortion Functions 

Orthogonal mappings with distortion functions having a 
form different from that developed before are of course 
possible and, in fact, highly desirable to achieve a more 
localized control on the density of coordinate lines. The 
previous developments may point the way to a proper 
definition of this problem. 

Let Li be the length of the side of the quadrilateral Q 



between the vertices Pi and Pi+ i (with P, = PI). With the applied, introducing functions a and b subject to the same 
convention shown in Fig. 1, the side L, is mapped onto restrictions as before. Since the ratio of scale factors for 
5 = 1, L, onto q = 1, L3 onto 5 = 0, and L, onto q = 0. From the conformal transformations of this sequence is 1, the 
the geometric significance of the scale factors it is obvious appropriate form of the distortion function is readily 
that the integral conditions calculated to be 

must be satisfied, since only in this case will corners fall onto Note that, unlike the previous cases, fcannot be expressed 
corners. Equations (15) and (16) are a consequence of these directly in terms of 5 and q without the explicit knowledge 
relations and of the existence of a conformal mapping of Q of the function G, defined in (11). 
onto the conformal rectangle R. Furthermore, to ensure For trilaterals, let us consider first the case in which two 
that (11) is satisfied, so that the mapping is quasi-confor- consecutive sides are straight with equal lengths, while the 
mal, f must exceed M somewhere in S. This condition will third side is arbitrary. Let P, be the vertex where the two 
ensure that the mapping does not have folds in the domain. straight sides meet and let P, and P, denote the other two 

It may be conjectured that these conditions are necessary vertices. Further, let a be the (interior) angle at P,. The 
and sufficient for the existence of the required orthogonal stretching coordinate transformation i = r, 0 = 2rctl/a maps 
mappings. That this is indeed the case, of course, still awaits the physical domain onto a circle-like domain in which the 
a proof. In any case, even if the conjecture can be proven, a two straight sides appear as the two sides of a cut running 
way must be found to efficiently enforce these constraints in between P, and the two coincident images of P, and P,. 
the construction (possibly adaptive) of general distortion The Riemann mapping theorem guarantees that this 
functions. domain can be mapped onto the unit circle in such a way 

that the point P, is mapped onto the center of the circle and 
111.2. Degenerate Quadrilaterals the point(s) P,, P, is mapped onto the point ?= 1, 0 = 0. 

As mentioned above, degenerate quadrilaterals are those 
Polar coordinates stretched by 2~ now map this circle onto 

for which one or two non-adjacent sides degenerate to 
the unit square 0 Q [, f < 1, and a further stretching trans- 

points. Since in this case a point in the physical space is 
formation can be carried out as before. The final distortion 

mapped to one side of the computational square, the maxi- 
function for the composite mapping is easily seen to be given 

mum dilatation is not finite and the resulting mapping not by 

quasi-conformal. However, in some cases, one can dispense 
with the theory of such mappings, because the Riemann 
mapping theorem can be used directly. 

/=a[$$. 

Let us address the case of a lune-shaped region first, 
because it is simpler. The Riemann mapping theorem As before, the function G, must be known to express this 
guarantees the existence of a conformal mapping such that result in terms solely of <, r~. This is similar to the construc- 
the lune is mapped onto the unit circle in the (r, q) plane tion used by Ascoli et al. [ 171 in their proof of the validity 
with its two vertices mapped on p= + 1, q = 0. The further of the RL mapping procedure for a simply connected physi- 
transformation cal domain when it is desired to map the entire boundary 

onto one side of the computational domain. 
The previous procedure evidently fails for more general 

trilaterals. The generation of suitable orthogonal mappings 
in this case is a question that must be left open at the present 

which is conformal, maps the circle onto the infinite strip time. In particular, this comment applies to some of the 

-sxg<, , $7~ < 4 < 5~. Finally, the orthogonal trans- domains considered in Ref. [ 121 for which a = x, but the 

formation two straight sides are not necessarily of equal length. 
Since in the physical plane the degenerate points are con- 

[= l 
centration points for the coordinate lines, the corresponding 

1 +exp(-9)’ 
&2, scale factors must vanish at these points. From the delini- 

71 tion (1) off it is therefore seen that, in these cases, f must 
vanish when the degenerate point is mapped to a line of con- 

maps the infinite strip onto the square 0 d [, f < 1. At this stant 5 as in the procedures described above. The explicit 
point, the stretching argument previously used can be forms (17) and (18) of the distortion functions given above 

f=rc[(l -[)fi. 
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satisfy this restriction. If the degenerate point(s) were 
mapped to a line of constant q, the functionSwould become 
infinite there. As the construction of the distortion function 
for these degenerate cases does not need knowledge of the 
conformal module, such domains can be mapped with less 
computational effort than the quadrilaterals considered pre- 
viously. Examples of the orthogonal mapping of degenerate 
quadrilateral domains will be given in Section VI. 

111.3. Orthogonality 

A question of the utmost importance that we have not yet 
addressed is that of the boundary conditions under which 
the mapping equations (2) should be solved. Since, in these 
equations, the two coordinates are uncoupled, it is obvious 
that any mutual relationship between the coordinate lines, 
such as orthogonality, must arise from the imposition of 
suitable boundary conditions. Here we prove that, at least 
for the class of distortion functions considered here, the 
imposition of the condition g,, =0 along the boundary 
results in orthogonal coordinate lines throughout the 
domain. The first step is to verify by direct substitution that 

1 
axax ayay 

g”=gz+g@ 

satisfies Laplace’s equation in the [, 4 coordinates. There- 
fore, if this quantity vanishes on the boundary, by a well- 
known theorem, it also vanishes inside the domain. Next, 
we express gi2 in terms of ii2 by the chain rule to find 

R12=& 

Since Mjab is everywhere strictly positive and finite, the 
vanishing of g,, ensures the vanishing of g,, as well so 
that the coordinate lines are indeed orthogonal inside the 
domain as required. 

Some comments on the general case, where the distortion 
function is not constrained to have the form (13), are 
contained in Section V. 

IV. CALCULATION OF THE CONFORMAL MODULE 

The use of distortion functions of the class defined above 
requires the explicit knowledge of the conformal module of 
the physical domain. As already noted, this quantity is an 
intrinsic property of any quadrilateral domain and is a fixed 
number once the boundary arcs of the quadrilateral have 
been chosen. A discussion of earlier methods used to 
calculate the conformal module may be found in Gaier 
[23,24]. A basic theorem (that extends to degenerate 

quadrilaterals as well) states that, given a sequence of 
quadrilaterals Q,, that tend to a quadrilateral Q, then 

lim M(Q,) = M(Q). 
n-cc 

This result allows one to estimate the module by 
approximating the given domain and calculating the 
module of the approximate domains. 

The methods of evaluating the module can be broadly 
divided into two classes. One class relies on the fact that, 
given a conformal mapping between the domain of interest 
and a rectangle, the module is simply the ratio of the adja- 
cent sides of the rectangle. These methods are evidently only 
useful in special cases where the form of the mapping 
is known a priori, such as domains to which the 
Schwarz-Christoffel transformation can be applied. An 
example of methods of this type has been given by Trefethen 
[25], who uses it for the calculation of the module of 
polygonal domains. For such cases the module is calculated 
extremely accurately. However, this method cannot 
efficiently be extended to general domains by considering 
them as limiting cases of polygonal ones, as the necessary 
computational work increases proportionally to the cube of 
the number of sides of the polygon. 

The second class of methods is based on the following 
characterization of the module (see, e.g., Ref. [7]). Con- 
sider, in the quadrilateral domain Q, the solution 4 to the 
problem 

v24=o (19) 

f$=l onr,, I$=0 on r,, 

84 (20) 
%=a on r2, r,, 

where ri + r2 + r, + r, = r is the boundary of Q, and the 
numbering is in the positive orientation. The module is then 
given by 

where s denotes the arc length along ri. Several methods 
are based on the solution, by finite differences or finite 
elements, of this problem [23, 241. Our starting point is 
also this formulation, but we effect the calculation through 
the boundary element method. This approach is attractive, 
as the previous formulation shows that the evaluation of the 
module does not require the knowledge of 4 inside Q, but 
only of @/an on the boundary of Q, and this is exactly the 
quantity given by the boundary element calculation. 

Application of Green’s identity to the problem yields the 
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following integral relation satisfied by the value of 4 at the 
generic point x of the boundary r, 

cd(x) = jr G( x, x’) t&x’) ds,. 
x’ 

- 5 r 4(x’) -$ G(x, x’) ds,., x’ (221 

where G = log Jx - x’l is the free-space, two-dimensional 
Green’s function. The constant c equals the aperture of the 
angle under which the domain is seen from the point x. If x 
is such that a unique normal to the boundary can be defined 
there, the value of c is rc. 

Subdividing r into N arcs, and introducing a local coor- 
dinate ai which, without loss of generality, may be assumed 
to vary over the range (0, 1) in each subdivision, we obtain 

c$(d) = i {J’ $(a’) G(x(a’), ~‘(a’)) J(aj) da’ 
j=1 0 

- #(ai) $ G(x(a’), x’(a’)) J(aj) daj}. (23) 

Here we have set I,+ = &,$/an, and J is the Jacobian of the 
transformation from the arc length to the variable a, which 
we take to be the normalized chord length between suc- 
cessive nodes. The simple boundary conditions (20) for the 
potential problem considerably simplify the discretized 
form of the integral equation. Further simplification can be 
achieved by observing that it is necessary to solve the 

3 
i 1 

1 1 
L 

3 

A a 

a= n/4 1 e 

FIG. 2. Domains for which the present algorithm for the calculation of 
the conformal module has been tested. See Section IV and Table I for 
details. 

TABLE I 

Comparison Between the Exact Values of the Module for the 
Domains of Fig. 2 and the Numerical Results Given by the 
Method of Section IV 

Fig. 2 Calculated M Exact M 

6 
4.55815 4.55873 
1.00009 1.OOOOO 

C 1.27321 1.27324 

problem only so far as to be able to evaluate the integral in 
the expression (21) for the module. 

The above equation may now be approximated by intro- 
ducing a suitable set of local basis functions and by using 
these to approximate both the geometry and the unknowns 
4 and $. After performing the discretization, we perform the 
integrations in (23) and solve the resulting system by 
collocation. Two implementations of the above algorithm 
have been developed. One version uses linear basis func- 
tions for both the geometry and the variables, with the 
resulting integrals then being evaluated exactly. The 
collocation points are taken to be the center points of the 
“panels.” For the examples that follow, in which domains 
with boundaries with large curvature are encountered, use 
was made of a second code in which 4 and II/ are 
approximated linearly, while cubic splines are used for the 
geometry. This code uses Gaussian quadrature to do the 
integration. 

The method was tested against one problem also solved 
with Trefethen’s code SCPACK [26], which yields “exact” 
results (Fig. 2a), and also against two analytical results 
(Figs. 2b and c). The computations were carried out in 
double precision. A comparison is presented in Table I. 

V. THE MAPPING ALGORITHM 

Once the conformal module of the given domain has been 
determined and a suitable distortion function constructed, 
the mathematical formulation of the present mapping 
problem is given by 

(24) 

(25) 

to be solved in S: (0 < 5,~ < 1 ), subject to the boundary 
conditions 

axax avav _ 
t-26) 
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along the four arcs 

Fi(X, Y) = 0, i=l ) . ..) 4. 

Neumann boundary-value problems is required. This is 
done iteratively as follows. For the purpose of illustration 

(27) consider the 5 = 1 boundary, along which q varies from 0 to 
1 (Fig. 3). Let the equation of this curve be 

The discretized solution of this problem will consist of a 
series of lines in the physical (x, y) plane corresponding to FM4 = 1, v), Y(i” = 1, rl)) = 0. 
constant values of the transformed coordinates 5, q. 

Equations (24) and (25) are elliptic for f > 0 and, while D’ff 1 
they are linear, they are coupled through the boundary 

erentiating, on t = 1 we can then write 

conditions (26) and (27). The nonlinear nature of these 
boundary conditions constitutes the major challenge to 

cYFt3x aFc?y --+---co. 
ax all ay atj (28) 

the solution of the mapping problem. We describe here a 
finite-difference method. A spectral method is currently 
under development. On substituting from (28) in the orthogonality condition 

Since we restrict ourselves to distortion functions of the (26) and re-arranging of terms, we have 
form (13), the mapping equations are separable and 
Swarztrauber’s finite-difference technique for the solution 

( 

aF ax aFay ax _-_-- -= 
of elliptic separable equations [6] can be applied. For > ay ag ax ag all 

o 
’ 

standard boundary conditions, this method yield the direct 
solution of such problems in the time taken for about four f rom which we deduce that the following equivalent bound- 
or live SOR iterations. A subroutine, from the package ary conditions may be imposed: 
FISHPAK [27], developed for the implementation of this 
technique was used in our calculations. aFax 

The boundary conditions (26) and (27) must be imposed 
away =. ----- 

in a way that allows the use of the above subroutine, in 
ay ag axat; > ’ (29) 

the sense that only the solution of standard Dirichlet or F(x, y) = 0. (30) 

J= J+l It can be shown that the above equations hold even for the 
case ax/atj = 0. 

Suppose that an estimate of the positions {Pi}, where the 
coordinate lines meet the boundary line 5 = 1, is known. 
These are used as Dirichlet boundary conditions and the 
solution to the field equations (24) and (25) is obtained. 
This solution will consist of an estimate of the image of the 
lines l= const and q = const in the physical plane. Consider 
now, for example, a line rl= 4 = const (see Fig. 3), meeting 
the boundary 5 = 1 at a point Pi. We retain the interior 
points and estimate a new position P, for this point as 
follows. The 5 derivatives are approximated using one-sided 
(backward in this case) fourth-order differences, based on 
the computed values of (x, y) corresponding to the interior 
points tl, r,- i, t,- *, and 5,--3, along the line q = qj. Here 

I’ !,=I the notation is such that x;i = x(ti, vi) and the total number 
of nodes in the 5 direction is I+ 1. In this way one obtains 

,= 1+1 a system of the type 

---> x 

FIG. 3. Details of the boundary algorithm. The figure shows, in the 3 (31) 
physical space, the < = 1 boundary, along which t] varies from 0 to 1. The 
dashed lines inside the domain show the coordinate lines ( = const and F(x;+,, y’;+,)=O, (32) 
r] = const at the current iteration. New positions for the boundary points 
are generated using the orthogonality condition. The starred points, along 
q=fi, are used in the finite-difference approximation of the derivatives where 
in the < direction. The circled point represents the new position of the 
boundary point. A = -4x{ + Jxj- _ 16 + ixip I 1 12 4 I 2’ 



ORTHOGONAL. MAPPINGS 263 

and B is obtained from A by changing x into y. This system 
is solved by using the Newton-Raphson technique to obtain 
new values for the boundary coordinate x*, y,. A similar 
procedure is followed for each boundary point. The updated 
values x* and y.+ for each node are then used as Dirichlet 
boundary conditions for the field equations, and the process 
is repeated until the displacements Ix* - xj+ i 1, / y* - y{+ I 1 
of all the boundary points are below a certain tolerance. 
Since Eqs. (30) and (31) are part of an iterative procedure, 
it is not necessary to solve them to a high degree of accuracy. 
The computations at each node along the boundary are 
independent of each other so that full advantage can be 
taken of parallel computer architectures and also of 
vectorization. 

A straightforward variant of this procedure can be used 
when the boundary is given by points instead of equations, 
or where the evaluation of the Jacobian required by the 
Newton-Raphson method is expensive. Splines are fitted 
through a distribution of points on the boundary, and the 
calculations are performed in terms of the spline parameter 
t. Thus, if the boundary lines are given by x = x(t) and 
y = Y(t), Eq. (25) can be written as 

axax aray --+--zoo. 
at at at ag (33) 

The t-direction derivatives are approximated using finite 
differences, which lead to relations of the form 

with A and B as before. At each point, this equation is 
solved for the new variable t, by using the Newton 
Raphson technique. The values X( t*) and Y( t*) are then 
used as Dirichlet boundary conditions for the field equa- 
tions and so forth as before. 

A significant simplification of the previous procedure 
occurs when some of the boundary arcs of the domain are 
straight and parallel to the x or y axes. Here the correspond- 
ing boundary condition becomes a simple Neumann condi- 
tion for one of the variables and a simple Dirichlet condition 
for the other. Iterations on such boundaries are not needed. 

The above boundary iteration is nested inside an outer 
iteration where Eqs. (24) and (25) are solved using the fast 
solver. We have found that the first boundary iteration 
results in a much greater displacement of boundary points 
than subsequent ones. Therefore, we have used only one 
boundary iteration for each outer iteration. Convergence of 
the scheme has been tested by providing different initial 
guesses to the boundary point distribution and checking 
that the solutions obtained were the same. 

As a concluding comment we return to the question of the 

appropriate conditions that would ensure orthogonality 
throughout the domain in the case of general distortion 
functions. Whatever the distortion function, it is evident 
that satisfaction of the boundary orthogonality relation (26) 
is a necessary condition on the mapping. Provided it 
converges, for anyf, the algorithm just described leads to a 
well-defined solution of the problem posed which cannot be 
subjected to any further constraint. This remark strongly 
suggests that boundary orthogonality is also a sufficient 
condition for the mapping, so that solution of the problem 
(24) to (27) would lead to an orthogonal mapping in every 
case, provided of course that f is suitably chosen. Two dif- 
ficulties, however, can arise. The procedure may not con- 
verge, or the final solution may fail to be orthogonal inside 
the domain. The first possibility hinges on the question of 
the existence of the mapping. If a suitable f is chosen, such 
that (10) holds, and the mapping exists, then, by continuity, 
there must be a non-empty set of initial guesses for the dis- 
tribution of boundary points such that the orthogonal map- 
ping is found. The boundary orthogonality condition would 
then also be sufficient to ensure orthogonality throughout 
the domain. The second possibility hinges instead on the 
uniqueness of the solution to the non-linear boundary-value 
problem posed by Eqs. (24) to (27). If more than one solu- 
tion exists, it may happen that some solutions correspond to 
orthogonal mappings while others do not. This possibility 
must be left open at the present time. However, it can be 
stated that, at least for some initial guesses, the previous 
algorithm will always lead to an orthogonal mapping for 
suitable distortion functions. 

VI. APPLICATIONS 

We now consider some examples chosen to give a 
stringent test of the method and of the algorithm described 
in the preceding sections. All the calculations to be 
described have been carried out in single precision on a 
VAX station 3200. The grid used was 33 x 33, with fourth- 
order accurate finite-difference schemes. Between 30 and 40 
iterations were completed per minute of CPU time, a figure 
that includes a substantial overhead for the calculation of 
auxiliary quantities that would not normally be required in 
applications. To avoid biasing the results in any way, in all 
cases the iterative procedure was started with an equi- 
spaced distribution of points along the boundaries. In 
several applications, e.g., a boundary evolving in time, an 
initial guess quite close to the final solution may be 
available. The iterations were stopped when the greatest dis- 
placement of the boundary points was smaller than 10e4. 
Since in the following applications the linear size of the 
domains is of order one, there was no need to scale this 
number. Our experience is that, loosening the convergence 
criterion to 10e3, reduces the number of iterations by about 
a factor of two. Although we have not systematically 
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a 

FIG. 4. Lines of constant r and q in the physical domain for several mappings of the region defined by z = cz for 0 < (, q 6 1. Figure 4a is for the 
conformal mapping obtained withj = 1. Figures 4b and c show the mappings obtained with the distortion functions given in the text. 

explored the matter, we have found that convergence can be 
accelerated by nearly an order of magnitude by use of point- 
SOR techniques. 

The criterion used to terminate the iterations does not 
refer directly to the orthogonality of the mesh. When con- 
vergence has been achieved, to check orthogonality, for 
each internal node we calculate the maximum relative error 
in the Beltrami equations (9), i.e., 

The partial derivatives are evaluated by a five-point, fourth- 
order accurate finite-difference formula. It might seem 
appropriate to use the Beltrami error as a convergence 
criterion rather than the boundary point displacements. 
However, we have found that, when the individual terms of 
the maximum Beltrami error are small (of order 10 P3 with 
the present single-precision calculations), the round-off 
error may lead to a high Beltrami error even though the 
angles may be quite close to 90”. In addition to the Beltrami 
error, we calculate, for each node, the angle 0 between the 
coordinate lines 

e=arccos g,, 
( > Ml . 

We have found that the maximum deviation from 90”, 8,, 
did not necessarily occur at the node with the greatest 
Beltrami error, although it usually was found at a node in 
its neighborhood. 

In most of the examples that follow, the boundaries are 
prescribed analytically so that the boundary functions F 
and their derivatives appearing in the Newton-Raphson 
solution of (29) and (30) could be calculated exactly. 
However, as this is often a tedious task, we use for all cases 
a cubic-spline representation of the boundaries. 

Figure 4 is a test of the technique proposed for the case of 
the region defined by z = c’ with [ = 5 f iv and 0 < <, q d 1. 
Here, the midpoint of the base corresponds to 5 = 0, r] = 0 
and is therefore a corner of the quadrilateral of aperture z. 
Since the mapping is required to be orthogonal, any corner 
at which the angle fails to be n/2 introduces a singularity. 
This circumstance is well known in the theory of conformal 
mapping and will be encountered in several other examples 
later on. However the mapping continues to be quasi- 
conformal, as the ratio of the stretchings introduced at this 
point is finite. For this region, the conformal module is 

1 f 
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BOUNDARY ERROR 

FIG. 5. Maximum Beltrami error versus maximum boundary error 
for the case of Fig. 4a. The iteration number is a parameter along the curve 
starting from the upper right and increasing toward the lower left. The 
flattening out of the lower left portion of the curve indicates a saturation 
of the Beltrami error due to round-o& 
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ITERATION NUMBER 

FIG. 6. Maximum boundary error versus iteration number for the 
calculation of Fig. 4a. The solid line corresponds to pure point-Newton- 
Raphson, the dotted line to over-relaxation on the boundary iterations 
only, and the dashed line to over-relaxation both on the boundary iteration 
and on the internal points. This result has been obtained by assuming an 
over-relaxation parameter equal to 1.9. 

evidently unity. We first consider, in Fig. 4a, the conformal 
mapping for which f = 1. Here convergence required 179 
iterations, the maximum error in the Beltrami equations 
was 0.4 % , and the angle 8, was 89.90”. The points where 
the maximum errors were found are close to the singular 
point. 

a 

Y 
I 
-X 

To demonstrate the “saturation” of the Beltrami error as 
convergence is approached, in Fig. 5 we show a graph of the 
Beltrami error versus the boundary error for this calcula- 
tion. The iteration number can be considered a parameter 
along this curve, increasing as one moves from the upper 
right toward the lower left. This progression is regular for 
most of the way toward convergence, but breaks down near 
the lower left part of the curve where round-off destroys the 
connection between the boundary and the Beltrami errors. 
Approach to convergence is shown in Fig. 6 in the form of 
the maximum boundary error versus iteration number. The 
solid line corresponds to pure point-Newton-Raphson, the 
dotted line has been obtained with overrelaxation on the 
boundary iterations, and the dashed line has been obtained 
with overrelaxation both on the boundary iteration and on 
the internal points. In this last calculation the overrelaxa- 
tion correction was applied also to the computed position of 
the internal points as obtained from the solution of the field 
equations. The figure shows that a reduction in the number 
of iterations of a factor three is possible in this case for the 
same final error. This result has been obtained by assuming 
an overrelaxation parameter equal to 1.9, a choice that we 
have made no attempt to optimize. 

Returning to the region of Fig. 4a, we demonstrate in 
Figs. 4b and c the degree of control achievable on the dis- 
tribution of the coordinate lines by changing f: Figure 4b 
has been obtained with f= pi(<)/p,(q), where pi(<) = 
0.3k,(O.l + 5’). Here k, is a normalization constant 
required by the condition ( 15) and has the value k, = 
1000”2 arc tan( 101i2)/3 N 13.3292. This case required 221 
iterations, with a maximum Beltrami error of approxi- 
mately 2.6% and an angle of 89.21”. Figure 4c is for 

FIG. 7. The domain has three sides parallel to the x and y coordinate axes, while the fourth side is given by the equation ,x = i + t cos(ny), 0 < y < 1. 
Figure 7a shows the mapping withf = M, while Figs. 7b and c show the mappings obtained with the distortion functions given in the text, The co&n& 
module M was determined using the algorithm of Section IV. 
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FIG. 8. The mapping with f= M of a NACA-0015 airfoil inside a 
circle. Since the airfoil is symmetric only half of the domain is shown. 

f = p2(<), with p*(t) = k2( 1 - 0.95) and k, = y log 10 N 
2.5584. This required 182 iterations with a maximum 
Beltrami error of 0.5 % and an angle of 89.88”. 

The region considered in the next series of examples in 
Figs. 7 is the same one of Ref. [ 181 for which the weak-con- 
straint method of RL failed to converge. We have encoun- 
tered no difficulties with our approach. Three sides are 
parallel to the coordinate axes and the fourth one is given by 
x = $ + d cos(ny), 0 < y < 1. The conformal module of this 
region, calculated by the method of Section IV, is found to 
have the value M = 2.169603. The mapping shown in Fig. 7a 
has been obtained by takingf = M. The maximum Beltrami 
error was 5.2 % , and the angle 8, = 89.71 O. For Fig. 7b,f = 
Mp,(c)/p,(q), with p1 as before. Here the Beltrami error 
was large, 80 % , but the angle 6, was quite satisfactory, 
89.78”. In this example the maximum error occurs in the 
neighborhood of the upper right-hand corner, where the 
magnitude of the terms dividing in Eqs. (35) is small. This 
circumstance arises because the coordinate lines in that 

FIG. 9. Mapping withf = M = 1 of the domain obtained by construc- 
ting semi-circles on the four sides of the unit square. 

FIG. 10. Mapping of a lune with the two sides given by y = x( 1 - x), 
and y = -x( 1 -x2), andfas in the text. 

neighborhood are very nearly horizontal and vertical, which 
causes one of the Beltrami equations to become close to the 
trivial identity 0 = 0. Use of double-precision arithmetic 
would presumably reduce this error which, however, 
appears to be of little significance. The last case for 
this region, shown in Fig. 7c, has been obtained with 
f = M/p,(q), with p2 as before. Here the Beltrami error 
was 2 %, and the angle 89.71’. These three cases required 
221, 122, and 125 iterations, respectively. 

Another set of examples is shown in Figs. 8 and 9. 
Figure 8 is the mapping for a NACA-0015 airfoil in a circle, 
obtained with f = Mp,(f)/p,(q), with M = 2.303574, pj = 
k3( 1 + 30, and k, = f log 4 N 0.4620981. Since this airfoil is 

FIG. 11. Mapping of a trilateral with sides, y= -x, y =x, and 
y = r(0) sin(e) x = r(0) cos(8), with r(0) = (1 - 0.2(2/@( 1-2/n@), 
8 = arc tan(y/x), andfas in the text. 
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TABLE II 

Details of the Computational Algorithm 

Figure M Distortion function 8, Beltrami error Iterations 

4a 1 M 
4b 1 MP,(~)/P,(v) 
4c 1 MPZ(~) 
la 2.169603 M 
7b 2.169603 MPI(~/P,(v) 
7c 2.169603 M/pz(q) 
8 2.303574 MP,(S)/PAV) 
9 1 M 

10 a1 -5) 
11 7w 

89.90” 4.44 X 10-j 179 
89.21” 2.64 x lo-’ 221 
89.88” 5.58 x 1O-3 182 
89.71” 5.15 X lo-* 221 
89.78” 8.0 x 10-l 122 
89.71” 1.91 x 1om2 125 
88.89” 6.20 x 10-l 321 
89.20” 5.26 x 10m3 251 
89.65” 205 
89.76” 156 

Note. All calculations were performed in single precision with a 
boundary tolerance (see text) of 10-4. The conformal module M for 
Figs. 4 and 9 is known exactly. The module for Figs. 7 and 8 is calculated 
using the algorithm described in Section IV. The regions in Figs. 10 and 11 
are degenerate quadrilaterals with zero module. The quantity eM is the 
angle between the coordinate lines which exhibits the maximum deviation 
from 90”. p,(t) =0.3k,(O.l + t*), p2(5) =k,(l -0.95), p,(t) =k,(l + 35), 
with k, = 1000’;2 arc tan( 10’12)/3 = 13.3292, k, = 9 log 10 = 2.558428, 
k, = flog 4 = 0.4620981. These functions satisfy the restrictions detailed in 
Section III. For Figs, 10 and 11 the distortion function vanishes at the 
degenerate points (see text). 

symmetric, only one-half of the domain is shown. This 
calculation required 321 iterations with a maximum 
Beltrami error of 68 % and 8, = 88.89”, which is the maxi- 
mum departure from orthogonality encountered in all 
examples. The geometry introduces a singularity at the 
trailing edge where the angle is not 742. In Fig. 9,f = M = 1. 
The number of iterations was 251, the error 0.5 %, and 
8, = 89.20”. 

Figures 10 and 11 are two examples of the mapping of 
degenerate quadrilaterals. Figure 10 is for a lune-shaped 
region the precise definition of which is given in the caption. 
In this case we have used for the distortion function the form 
(17) with a = b = 1. The quantity tIM was 89.65” and 205 
iterations were required. Figure 11 is for a trilateral of the 
special class considered in Section III and fully described in 
the caption. Here f = ire< with a = b = 1. In this case 156 
iterations were required and 8, = 89.79”. Since neither of 
these mappings is quasi-conformal, the Beltrami errors 
cannot be defined. 

Several aspects of the numerical results described above 
are summarized in Table II. 

VII. SUMMARY AND CONCLUSIONS 

The orthogonal mapping technique proposed by Ryskin 
and Lea1 has been investigated, and several issues regarding 
its applicability have been clarified. An explicit class of dis- 
tortion functions for the mapping equations, and suitable 
boundary conditions to be imposed on these equations, 

have been developed. The issue of the existence of the map- 
ping for more general distortion functions (and the related 
issue of adaptivity) remain open questions, though a 
necessary condition that general distortion functions must 
satisfy has been obtained. The mapping method developed 
in this paper has been applied to problems for which the 
original method of RL fails. 

A useful consequence of the factored form for the distor- 
tion function developed in Section III is that the mapping 
equations are separable and can therefore be efficiently 
solved by direct methods. In addition, partial differential 
equations, that were separable in the original Cartesian 
coordinate system, continue to be separable in the trans- 
formed coordinates. Since the computational domain is a 
square, advantage can be taken of this. For instance, rapid 
elliptic solvers developed for elliptic separable equations on 
rectangular domains [6] can be used for the solution of the 
transformed problem. 

When compared with conformal mappings, the present 
method offers a much greater flexibility. It also appears to 
be quite stable in the sense that a slight alteration of the 
domain will not drastically change the mapping. Control of 
the distribution of the coordinate lines can be achieved 
through the proper selection of the functions u and b intro- 
duced in Section III. Further work on this aspect of the 
method is, however, necessary for the reasons indicated at 
the end of Section III. 

Another useful aspect of the work described in this paper 
is a new technique for the computation of the conformal 
module of quadrilaterals. The examples shown seem to 
indicate that our approach has significant advantages over 
other available methods. 
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